Closing Thu, Jan. 15: 12.4(1)(2) Closing Tue, Jan. 20: 12.5(1)(2)(3) Closing Thu, Jan. 22: 12.6

12.5 Lines/Planes in 3 Dimensions

LINES

In order to describe lines in 3D, we will use vectors and parametric equations. As warm up and motivation, here is an example of the idea in 2 dimensions:

Ex: Consider the line $y=2 x+1$.
(a) Find a vector that is parallel to this line. Call this vector \mathbf{v}.
(b) Find a vector whose head touches the line when drawn from the origin.
Call this vector r_{0}.
(c) We can reach all other points on the line by walking along r_{0}, then adding scale multiples of \mathbf{v}.

We can use this idea to describe any line in 2 or 3 dimensions using vectors.
The equation for a line in 3D: If we can find:
$v=\langle a, b, c\rangle=\quad$ a vector parallel to the line.
$\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=$ a position vector
(which means $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the line)
then all other points on the line can be obtained by

$$
\langle x, y, z\rangle=\left\langle x_{0}, y_{0}, z_{0}\right\rangle+\mathrm{t}\langle a, b, c\rangle
$$

which is sometimes written as:

$$
r=r_{0}+\mathrm{t} \boldsymbol{v}
$$

Visual of a Line in 3D:

PLANES:

To find the equation for a plane:

 $\boldsymbol{n}=\langle a, b, c\rangle=\quad$ a normal vector. $\boldsymbol{r}_{\mathbf{0}}=\left\langle x_{0}, y_{0}, z_{0}\right\rangle=$ a position vector (which means $\left(x_{0}, y_{0}, z_{0}\right)$ is a point on the plane)then if (x, y, z) is any other point on the plane

$$
\langle a, b, c\rangle \cdot\left(\langle x, y, z\rangle-\left\langle x_{0}, y_{0}, z_{0}\right\rangle\right)=0,
$$

which is sometimes written as

$$
\boldsymbol{n} \cdot\left(\boldsymbol{r}-\boldsymbol{r}_{\mathbf{0}}\right)=0
$$

